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Hierarchical level-clustering in two-dimensional harmonic oscillators

C. B. Whan
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachuset

~Received 19 November 1996!

We present numerical results for the statistical distribution of energy level spacings in two-dimensional
harmonic oscillators with the irrational frequency ratioR[v1 /v2 . Unlike scaled level spacings, the distribu-
tion of the true energy level spacings is well behaved, and directly reflects the corresponding classical quasi-
periodic motion. The histogram of the energy level spacings shows sharp peaks at discontinuous values which
form a hierarchical rational approximations toR. The peak heights follow a characteristic inverse-square-law
increase as the level spacingDE decreases, indicating a form of level clustering rather than level repulsion as
previously believed. We believe the failure of convergence in the scaled level spacing distribution is due to the
lack of proper energy scales in the system, since the average~true! level spacing vanishes in the semiclassical
limit. @S1063-651X~97!50904-4#

PACS number~s!: 05.45.1b, 03.65.Sq
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In the last two decades much progress has been mad
understanding the correspondence between classical
quantum dynamics of Hamiltonian systems@1–3#. One
manifestation of this correspondence is the different univ
sality classes that the quantum mechanical level spacing
tributions belong to, depending on whether the correspo
ing classical Hamiltonian system is integrable or chao
@4,5#. For integrable systems, it was shown by Berry a
Tabor@4#, almost 20 years ago, that the generic level spac
distribution follows the Poisson’s law of exponential dec
with a maximum at zero~level clustering!. The same authors
also note that the harmonic oscillator~in higher than one
dimension!, possibly the simplest integrable system, does
follow this generic rule. Furthermore their numerical expe
ment indicated that for two-dimensional harmonic oscillat
~2DHO’s! with an incommensurate frequency ratio, the
was some sort of level repulsion, common for systems w
chaotic classical motion. Subsequent studies by Pandey
co-workers @6,7# improved the numerics of Ref.@4#, and
found that the scaled level spacing distributionP(s) does not
converge in the semiclassical limit. In contrast, Bleher@8#
studied the true level spacing distribution from a mathem
cal point of view, and was able to derive some analyti
results, emphasizing the discreteness and rigidity of the s
trum. More recently, there was an attempt@9# to introduce
special averaging techniques in order to obtain a stable
tribution, again a mathematical trick.

In this paper, we use numerical experiment as our too
study the 2DHO level spacing distribution from a mo
physical standpoint. This approach enables us to unders
the relation between the quantum level spacing distribu
and the corresponding classical trajectories. We also off
physically appealing explanation of the difference betwe
the distribution of the true level spacings and that of
scaled spacings. We demonstrate numerically that if one c
siders the real energy level spacingDE, instead of the scaled
spacings ~we will discuss the explicit definition ofs at the
end of the paper!, the level spacing distributionP(DE) is in
fact well behaved and physically meaningful, even thou
the rigorous mathematical aspect of it is more subtle,
pointed out in Ref.@8#. We found thatP(DE) is sharply
551063-651X/97/55~4!/3813~4!/$10.00
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peaked at a series of discontinuous values, with the p
heights following a characteristic inverse-square-law-l
rise asDE→0, in agreement with Ref.@8#. It is interesting to
note the similarity between the 2DHO and other quasip
odic systems, where inverse-power-law-type level spectr
was also observed@10–12#.

In terms of action-angle variables@2,3#, a 2DHO is de-
scribed by the following Hamiltonian:

H~ I !5I–v5I 1v11I 2v2 , ~1!

where I i ( i51,2) are the two independent action variable
andv i are the two frequencies. The classical motion of t
system is described by a pure rotation on a two-dimensio
~2D! torus in the originally four-dimensional phase spac
If the two frequencies are commensurate, i.
R[v1 /v25p/q, is a rational number, then the motion
periodic since the trajectory on the torus will close on its
after p andq rotations in the two independent angular va
ables, respectively. If, however, the two frequencies are
commensurate (R is an irrational number!, the system ex-
ecutes a quasiperiodic motion, and its trajectory never clo
and will eventually cover the 2D torus uniformly.

Quantum mechanically, 2DHO also constitutes a sim
textbook example, and its eigenfunctions and eigenval
can be readily obtained by solving Schro¨dinger’s equation.
In this paper, however, we will follow the authors of Ref.@4#
and use the Einstein-Brillouin-Keller~EBK! semiclassical
quantization rule, which, in the case of harmonic oscillato
gives the same energy spectrum as the exact quantum
chanical calculation. According to the EBK rule, the ener
levels are given by@3#

Em5H@ I5~m1a/4!\#5\v•Sm1
a

4 D , ~2!

where m5(m1 ,m2) are non-negative integers and th
Maslov indexa5(2,2) in this case. From now on we wi
drop the Maslov index~corresponding to the zero-point en
ergy! in the above expression since it does not affect
level statistics. NormalizingEm in terms of\v1, we have
R3813 © 1997 The American Physical Society
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Em[
Em

\v1
5m11m2R. ~3!

The energy spectrum described by Eqs.~2! and ~3! has a
simple geometrical interpretation, illustrated in the inset
Fig. 1~a!. If we think of a two-dimensional lattice with a unit
lattice constant, then every lattice pointm5(m1 ,m2) that
lies in the positive quadrant of this lattice space correspon
to a possible energy levelEm . The value ofEm , according to
Eq. ~2!, is obtained by projectingm onto the direction of the
‘‘frequency vector’’v5(v1 ,v2). Sincev is normal to the
energy contour defined bym–v5E ~a line in this case!, the
entire spectrum can be obtained by sliding the energy co
tour up ~increasingE! starting at the origin and projecting
any lattice point it crosses on the way ontov.

Numerically we use Eq.~3! to generateall the energy
levels up to a given maximumEmax and sort them in ascend-
ing order. After this reordering, the energy levels can b
labeled with a single index, i.e.,Em→Ei , where
i50,1,2, . . . ,N(Emax), andEi<Ei11. HereN(Emax! is the to-
tal number of levels with energyE<Emax @i.e., the total num-
ber of lattice points in the triangular region bounded by th

FIG. 1. ~a! A histogram of the nearest neighbor level spacing
for a two-dimensional harmonic oscillator with frequency rati
given by the golden meanR5s15(A521)/2. The plot is based on
N5106 levels, and the number of bins is 105. Inset: a geometrical
interpretation of the Einstein-Brillouin-Keller semiclassical quant
zation rule.~b! The level spacings plotted against the energy leve
illustrating the clustering ofDE on discrete values. Note that, start
ing from the third row, every row of horizontal points begins with
energies,E'Fn (n51,2, . . . ), whereFn are the Fibonacci num-
bers.
f
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coordinate axes and the energy contour,m–v5Emax, in the
inset of Fig. 1~a!#. Now the level spacing distribution
P(DE) is obtained simply by generating a histogram for t
spacings between allsuccessivelevels,DEi5Ei2Ei21, with
sufficient number of bins.

In Fig. 1~a!, we show a histogram for the distribution o
level spacings corresponding to an oscillator with frequen
ratio given by the golden mean,R5s1[(A521)/2. To re-
veal the details, Fig. 1~a! is plotted on a log-log scale. Th
histogram is based onN5106 levels, and the number of bin
is 105. One notices that, instead of a smooth converg
function as previously sought inP(s) @4#, P(DE) is sharply
peaked only on a discrete set of values which decreases
exponential fashion. Moreover, the height of these isola
peaks shows a highly regular increase in the form of
inverse-square law, asDE is decreased.

To understand the level spacing distribution, we show
Fig.1~b! the level spacings,DEi5Ei2Ei21, plotted directly
against the corresponding energy levelsEi , again on a log-
log scale. Note that this plot consists of individual poin
with each levelEi corresponding to auniquevalueDEi . We
see clearly that the level spacings are clustered on a disc
set of values that decrease exponentially as we go up
energy. The ‘‘banded’’ structure in Fig. 1~b! also suggests
that certain values of the level spacings only correspond
certain energy range. As a matter of fact, thex-axis ~i.e., the
energy levels! can be subdivided into consecutive sectio
with ‘‘equal lengths’’ ~remember the log scale!; in each of
these sectionsDE fluctuates only among three different va
ues. When we enter the next section another value ofDE is
born and it is lower than all threeDE values of the preceding
section. At the same time the higher value ofDE from the
previous section becomes inactive, therefore ensuring
there are only three activeDE values in the new section.

It turns out that the number theoretical properties of
frequency ratioR play a crucial role in understanding man
details of our observation. For our chosen value ofR5s1,
the golden mean, we recall thats1 has a simple continued
fraction expansion,s15@1,1,1, . . .# @13#, and its nth
approximant is given byFn21 /Fn . Here $Fn% are the
Fibonacci sequence defined byF050, F151, and
Fn115Fn1Fn21. It is easy to see from Eq.~3! that energy
degeneracy is strictly forbidden for irrationalR. Thus, as we
increaseEmax, the energy contour will never cross two lattic
points simultaneously. However, it can cross two points
arbitrarily close succession. In particular, it crosses the p
m5(Fn21,0) and (0,Fn) in succession, and generates a lev
spacing DE(Fn)5Fnus12Fn21 /Fnu. Since Fn21 /Fn is
closer tos1 than any other rational whose denominator do
not exceedFn @14,15#, we conclude thatDE(Fn) is smaller
than anyDE values that we encountered previously~i.e., with
Emax,Fn21'Fns1). All the small level spacings are gene
ated in this fashion during successive crossings of a pai
lattice points related to a pair of Fibonacci numbers. If o
looks carefully in Fig.1~b!, one will notice that the beginning
of each horizontal row of points~except the first two rows!
correspond to energy values that follow the Fibonacci
quence,E51,2,3,5,8,13,21, . . . . Also, due to the property
the golden mean,Fn212Fns15(2s1)

n11, all level spac-
ings are integer powers ofs1. Thus the entire distribution in
this case satisfies
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Ps1
~DE!}

1

~DE!2 d~DE2s1
n!, n51,2,3, . . . . ~4!

From a physical point of view, the distribution in Fig.
demonstrates the importance of the classical periodic or
in quasiperiodic systems, as in many other contexts reg
ing the classical-quantum correspondence@1#. For irrational
R, the classical trajectory is always quasiperiodic and p
odic ~closed! orbits are strictly forbidden. However, an
given section of a trajectory can be approximated very w
by closed periodic orbits. For example, whenR5s1, the
trajectory is nearly periodic afterFn21 and Fn rotations
along the two irreducible circuits, the difference is propo
tional to uFn212Fns1u,1/Fn11 @14#. The longer the trajec-
tory, the better the approximation~with accordingly longer
period orbits!. Therefore thequantumenergy level spacing
distribution in Fig. 1~a! can also be interpreted as a meas
of the closeness of theclassicalquasiperiodic trajectory to
the nearby periodic orbits, with the peak positions cor
sponding to the closeness in length, and the peak hei
corresponding to the relative fraction of time the trajecto
spends near the periodic orbits.

So far we have focused on a single value of the freque
ratio R5s1, mainly because of the number theoretical si
plicity of the golden mean. Much of our observations, ho
ever, can be readily carried over to other irrational freque
ratios. In Fig. 2~a! we show the level spacing distributio
for a slightly more complicated frequency rati

FIG. 2. Energy level spacing distribution for~a!
R5s25A221, and~b! R51/e. These spectra are to be compar
with the continued fraction expansionss25@2,2, . . .# and
e5@1,2,1,1,4,1,1,6, . . .#.
its
d-

i-

ll

-

e

-
ts

y
-
-
y

R5s2[A2215@2,2,2, . . .#. Now P(DE) not only has
peaks atDE5uGns22Gn21u, corresponding to the contin
ued fraction approximationsGn21 /Gn (Gn can be found
from,G050,G151 andGn1152Gn1Gn21), it also shows
peaks that correspond to the so-called intermediate fract
(Gn1Gn21)/(Gn111Gn) @15#. The intermediate fractions
are in some sense the second best rational approximatio
s2, since they would be the best approximations if we we
to removeGn21 /Gn from the real numbers. We see that th
peak corresponding to the intermediate fracti
(Gn1Gn21)/(Gn111Gn) has the same height as the o
corresponding to the continued fractionGn21 /Gn , while the
main peaks continue to follow the inverse-square law.

For general frequency ratioR, it is best approximated by
the continued fractionspn /qn5@a1 ,a2 , . . . ,an#. In addi-
tion, when an.1, there arean21 intermediate fractions
(pn211kpn)/(qn211kqn) (k51,2, . . . ,an21), between
pn21 /qn21 andpn /qn , which also provide a good approx
mation toR @15#. Pandey and co-workers@6,7# found a one-
to-one correspondence between the allowed nearest neig
level spacings of a 2DHO on one hand, and the contin
and intermediate fraction approximations of the frequen
ratio R on the other. In Fig. 2~b! we show a level spacing
distribution for a transcendental number,R51/e. We see
that the peak positions agree with the predictions of Pan
and co-workers. In addition, we notice that the changes
the peak heights occur only for the main peaks correspo
ing to the continued fractionspn /qn ~when E'pn'qnR).
All the an21 intermediate peaks have the same height as
main peak that precedes them. In fact, in Fig. 2~b!, if we start
from the right and count groups of peaks with the sa
height, we obtain the sequencee5@1,2,1,1,4,1,1,6,•••# @16#.
This regular behavior of the peak heights seems to be tru
general. In addition, ifR belongs to a class of relativel
simple irrationals known as quadratic numbers~which in-
cludess1 ands2), the entire distribution is self-similar an
shows a scaling behavior@17#. Indeed, if we replot the dis-
tribution of Figs. 1~a! and 2~a! using (DE)2P(DE) as the
Y-axis, we obtain periodic spectra~on a log-log scale! with
s1 ands2 as the periods~scaling factors! along theX axis.
This is obviously related to the fact that the continued fra
tion expansion of a quadratic number is periodic@14#. The
self-similarity in the level distribution is lost for a more gen
eral irrationalR, but the overall inverse-square-law-type ri
seems to persist, as seen in Fig. 2~b! for R51/e.

Now we briefly discuss the level spacing distribution
the scaled spectrum,P(s), with the scaled level spacing de
fined bysi[N(Ei)2N(Ei21) @recall thatN(x) is the number
of levels withE,x]. This is the distribution originally con-
sidered by Berry and Tabor@4#, and subsequently shown t
be nonconvergent by Pandey and co-workers@6,7# For
R51/A2, by picking the same number of levels and bins,
were able to reproduce exactly the histogram in Fig. 5~a! of
Ref. @4#. However, upon considering more levels and fin
bins, the histogram shows oscillatory behavior and fails
converge. The conflict between the highly regularP(DE) ~as
in Figs. 1 and 2! and the nonconvergentP(s) can be re-
solved, in our opinion, by noting an important fact: the a
erage level spacinĝDE& vanishes in the semiclassical limi
We can see this easily in the simple case ofR5s1. Accord-
ing to Eq.~4!,
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^DE&5E
0

`

Ps1
~DE!DEd~DE!5 lim

n→`

(
k51

n
1

s1
2k s1

k

(
k51

n
1

s1
2k

5 lim
n→`

(
k51

n S 1s1
D k

(
k51

n S 1s1
D 2k 50. ~5!

We expect the above result to hold for arbitraryR in light of
the inverse-square-law level spacing distribution favor
smallDE. The purpose of using a scaled level spacing is
introduce a mapEi→ei , such that the average spacing of t
new levels, si5ei2ei21, is unity ~i.e., ^s&51). For a
2DHO, however, the original true level spacings have z
average and therefore it is impossible to find a map that
map it into a spectrum with unit average spacing. By f
mally defining,ei5N(Ei), one ends up with a nonconverge
histogram. Another way to see this is to note that the sys
does not have a proper energy scale which one can us
normalize the level spacings. This is also reflected in
classical quasiperiodic trajectory, which does not have
unique time scale built in~such as the period of a close
periodic orbit!.

Before closing, we would like to make some comme
about the transition from the level spacing distribution o
2DHO to that of the generic 2D integrable Hamiltonian sy
-
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tem, namely, the Poisson distribution. First we recall th
what makes a harmonic oscillator different from generic
tegrable systems is its flat energy contour in action space@4#.
This makes a harmonic oscillator with incommensurate f
quency ratios a ‘‘permanently’’ quasiperiodic system, in t
sense that the frequency ratioR is energy independent. Onc
R is given, the classical trajectory remains topologically t
same regardless of the energy. Thus the corresponding q
tum energy levels only reflect the particular value ofR. This
is not the case for generic integrable systems, where the
quenciesv i(I )5]H(I )/]I i5v i(I5m\) depend on the val-
ues of the actions, which in turn is determined by energy.
we increase the energy rangeEmax, R varies smoothly and
the ‘‘memory’’ for a particular frequency ratio is lost in th
overall quantum level spectrum, so is the the correlation
tween different levels. As a result, the level spacing is ess
tially random, and we have a Poisson-like distribution.
seems reasonable then that the generic Poisson distrib
might arise as a result of an effective averaging of the h
monic oscillator level spectrum over all possible frequen
ratios. Further studies are needed, however, to establish
a connection. Finally we note that the two-dimensional h
monic oscillator is not only interesting on its own right,
also serves as a good model system for small quantum
in semiconductor heterostructures@18,19#.
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