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Hierarchical level-clustering in two-dimensional harmonic oscillators
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We present numerical results for the statistical distribution of energy level spacings in two-dimensional
harmonic oscillators with the irrational frequency ralle= w, / w,. Unlike scaled level spacings, the distribu-
tion of the true energy level spacings is well behaved, and directly reflects the corresponding classical quasi-
periodic motion. The histogram of the energy level spacings shows sharp peaks at discontinuous values which
form a hierarchical rational approximationsRo The peak heights follow a characteristic inverse-square-law
increase as the level spacidg decreases, indicating a form of level clustering rather than level repulsion as
previously believed. We believe the failure of convergence in the scaled level spacing distribution is due to the
lack of proper energy scales in the system, since the avénagg level spacing vanishes in the semiclassical
limit. [S1063-651X97)50904-4

PACS numbes): 05.45:+b, 03.65.Sq

In the last two decades much progress has been made preaked at a series of discontinuous values, with the peak
understanding the correspondence between classical aheights following a characteristic inverse-square-law-like
guantum dynamics of Hamiltonian systemi$—3]. One rise asA€—0, in agreement with Ref8]. It is interesting to
manifestation of this correspondence is the different univernote the similarity between the 2DHO and other quasiperi-
sality classes that the quantum mechanical level spacing digdic systems, where inverse-power-law-type level spectrum
tributions belong to, depending on whether the corresponagwas also observefd0-12.
ing classical Hamiltonian system is integrable or chaotic In terms of action-angle variabld®,3], a 2DHO is de-
[4,5]. For integrable systems, it was shown by Berry andscribed by the following Hamiltonian:

Tabor[4], almost 20 years ago, that the generic level spacing

distribution follows the Poisson’s law of exponential decay HD=lo=l101+ 10, (1)

with a maximum at zer@evel clustering. The same authors ) _ _ _

also note that the harmonic oscillatGn higher than one Wherel; (i=1,2) are the two independent action variables,
dimension, possibly the simplest integrable system, does nofnd ; are the two frequencies. The classical motion of this
follow this generic rule. Furthermore their numerical experi-System is described by a pure rotation on a two-dimensional
ment indicated that for two-dimensional harmonic oscillators(2D) torus in the originally four-dimensional phase space.
(2DHO’s) with an incommensurate frequency ratio, therelf the two frequencies are commensurate, ie.,
was some sort of level repulsion, common for systems witfR=w1/w,=p/q, is a rational number, then the motion is
chaotic classical motion. Subsequent studies by Pandey afigriodic since the trajectory on the torus will close on itself
co-workers[6,7] improved the numerics of Ref4], and after p andq rotations in the two independent angular vari-
found that the scaled level spacing distribut(s) does not ~ ables, respectively. If, however, the two frequencies are in-
converge in the semiclassical limit. In contrast, Blef@gf ~commensurateR is an irrational numbgr the system ex-
studied the true level spacing distribution from a mathemati€cutes a quasiperiodic motion, and its trajectory never closes
cal point of view, and was able to derive some analyticaland will eventually cover the 2D torus uniformly.

results, emphasizing the discreteness and rigidity of the spec- Quantum mechanically, 2DHO also constitutes a simple
trum. More recently, there was an attenipi to introduce textbook example, and its eigenfunctions and eigenvalues
special averaging techniques in order to obtain a stable digan be readily obtained by solving Sctieger's equation.
tribution, again a mathematical trick. In this paper, however, we will follow the authors of R?ﬂ

In this paper, we use numerical experiment as our tool, t@nd use the Einstein-Brillouin-Kelle(EBK) semiclassical
study the 2DHO level spacing distribution from a more quantization rule, which, in the case of harmonic oscillators,
physical standpoint. This approach enables us to understariives the same energy spectrum as the exact quantum me-
the relation between the quantum level spacing distributiorghanical calculation. According to the EBK rule, the energy
and the corresponding classical trajectories. We also offer iVels are given by3]
physically appealing explanation of the difference between
the distribution of the true level spacings and that of the _ _ _
scaled spacings. We demonstrate numerically that if one con- En=H[I=(m+ad)i]=f o
siders the real energy level spaciag, instead of the scaled
spacings (we will discuss the explicit definition of at the  where m=(m;,m,) are non-negative integers and the
end of the paper the level spacing distributioR(AE) is in Maslov indexa=(2,2) in this case. From now on we will
fact well behaved and physically meaningful, even thoughdrop the Maslov indexXcorresponding to the zero-point en-
the rigorous mathematical aspect of it is more subtle, agrgy) in the above expression since it does not affect the
pointed out in Ref[8]. We found thatP(A¢&) is sharply level statistics. Normalizing,, in terms off w,, we have

o
m-+ Z) , (2)
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109 : : 3 coordinate axes and the energy contourw= &, in the
inset of Fig. 1a)]. Now the level spacing distribution
P(A¢) is obtained simply by generating a histogram for the
spacings between adluccessivdevels, A& =& — & _ 4, with

10 [ ] sufficient number of bins.
g 3 3 In Fig. 1(a), we show a histogram for the distribution of
o WL 1 level spacings corresponding to an oscillator with frequency
10 ratio given by the golden meaR=o,=(/5—1)/2. To re-

3 & veal the details, Fig. (@) is plotted on a log-log scale. The
oL 1 histogram is based o= 10° levels, and the number of bins
‘ | is 1. One notices that, instead of a smooth convergent
function as previously sought iB(s) [4], P(A€) is sharply

0.001 0.01 0.1

Ae ! peaked only on a discrete set of values which decreases in an
exponential fashion. Moreover, the height of these isolated
1 - - peaks shows a highly regular increase in the form of an
oL inverse-square law, as¢& is decreased.
v e ®) To understand the level spacing distribution, we show in
M Fig.1(b) the level spacingsA& =& —¢&_ 4, plotted directly

o1 ¢ [V —

against the corresponding energy levéls again on a log-
log scale. Note that this plot consists of individual points
——— with each levek; corresponding to aniquevalueA&;. We
oo1 | | see clearly that the level spacings are clustered on a discrete
—] set of values that decrease exponentially as we go up in
- energy. The “banded” structure in Fig.(d also suggests
that certain values of the level spacings only correspond to a
0.1 1 10 1o  certain energy range. As a matter of fact, #iaxis (i.e., the
& energy levels can be subdivided into consecutive sections
with “equal lengths” (remember the log scalein each of
FIG. 1. (a) A histogram of the nearest neighbor level spacingsthese sectionaA £ fluctuates only among three different val-
for a two-dimensional harmonic oscillator with frequency ratio ues. When we enter the next section another valug &fs
given by the golden meaR= o= (y/5—1)/2. The plot is based on born and it is lower than all thre&€ values of the preceding
N=10° levels, and the number of bins is®l0nset: a geometrical section. At the same time the higher value/of from the
interpretation of the Einstein-Brillouin-Keller semiclassical quanti- previous section becomes inactive, therefore ensuring that
zation rule.(b) The level spacings plotted against the energy levelsthere are only three activ&€ values in the new section.
illustrating the clustering oA £ on discrete values. Note that, start- It turns out that the number theoretical properties of the
ing frqm the third row, every row of horizontal po_ints beg_ins with frequency ratioR play a crucial role in understanding many
energies£~F, (n=12,...), whereF, are the Fibonacci num-  4eails of our observation. For our chosen valueRef oy,
bers. the golden mean, we recall that, has a simple continued
£ fraction expansion,o;=[1,1,1,...] [13], and its nth
_ Em _ approximant is given byF, ,/F,. Here {F,} are the
Em= w, =Myt MR @ Fibonacci sequence defined b¥,=0, F;=1, and
Fri1=F,+F,_1. It is easy to see from Ed3) that energy
The energy spectrum described by E(®. and (3) has a degeneracy is strictly forbidden for irrationdl Thus, as we
simple geometrical interpretation, illustrated in the inset ofincreasef,,oy, the energy contour will never cross two lattice
Fig. 1(a). If we think of a two-dimensional lattice with a unit points simultaneously. However, it can cross two points in
lattice constant, then every lattice poimt=(m,;,m,) that arbitrarily close succession. In particular, it crosses the point
lies in the positive quadrant of this lattice space corresponds=(F,_1,0) and (OF,) in succession, and generates a level
to a possible energy levé],,. The value of,,, accordingto spacing A&(F,)=F,|o,—F,_1/F,|. Since F,_1/F, is
Eq. (2), is obtained by projectingh onto the direction of the closer too; than any other rational whose denominator does
“frequency vector” o= (w;,w,). Sincew is normal to the not exceedr, [14,15, we conclude that&(F,)) is smaller
energy contour defined by-w=¢ (a line in this casg the  than anyA £ values that we encountered previou§lg., with
entire spectrum can be obtained by sliding the energy cong,,<F,_1~F,0). All the small level spacings are gener-
tour up (increasing€) starting at the origin and projecting ated in this fashion during successive crossings of a pair of
any lattice point it crosses on the way onto lattice points related to a pair of Fibonacci numbers. If one
Numerically we use EQ(3) to generateall the energy looks carefully in Fig.1b), one will notice that the beginning
levels up to a given maximurd,,,, and sort them in ascend- of each horizontal row of point&xcept the first two rows
ing order. After this reordering, the energy levels can becorrespond to energy values that follow the Fibonacci se-
labeled with a single index, i.e.&,—¢&, where quencef=1,2,3,58,13,21, ... . Also, due to the property of
i=0,1,2... N(Ema), aNdE=<E , 1. HereN(Enay is the to-  the golden meankE,_,—F,o,=(—o,)"*%, all level spac-
tal number of levels with energ§<¢&,a[i.€., the total num- ings are integer powers of;. Thus the entire distribution in
ber of lattice points in the triangular region bounded by thethis case satisfies

<€

&

0.001
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10° ' - R=0,=v2-1=[2,2,2,...]. Now P(AE) not only has
peaks atA&=|G,o,—G,_4|, corresponding to the contin-

i @ F ued fraction approximation§,_,/G, (G, can be found
et 1 from, Gy=0,G;=1 andG,, 1=2G,+G,_,), it also shows

peaks that correspond to the so-called intermediate fractions
(G, +G,_1)/(G,+1+G,) [15]. The intermediate fractions
are in some sense the second best rational approximation to
10t ] o5, since they would be the best approximations if we were
] to removeG,,_, /G, from the real numbers. We see that the
L 4 peak corresponding to the intermediate fraction
‘ ‘ w ] (Gpt+ Gn,l)_/(Gn+1+Gn) _has the same height as the one
. corresponding to the continued fracti@®y_, /G, , while the
0.001 0.01 Ae 01 ! main peaks continue to follow the inverse-square law.
For general frequency ratig, it is best approximated by
10° - - - the continued fractionp,/q,=[a;,a,, ...,a,]. In addi-
tion, whena,>1, there area,—1 intermediate fractions,
i ) 7 (Pn—1tkp)/(gn-1+ka,) (k=1,2,...,a,—1), between
Pn-1/9,-1 @andp,/q,, which also provide a good approxi-
mation toR [15]. Pandey and co-workef$,7] found a one-
to-one correspondence between the allowed nearest neighbor
level spacings of a 2DHO on one hand, and the continued
10* L ‘ ( ‘ l . and intermediate fraction approximations of the frequency

ratio R on the other. In Fig. ) we show a level spacing
3 distribution for a transcendental numbé&=1/e. We see
that the peak positions agree with the predictions of Pandey
0.001 0.01 1 and co-workers. In addition, we notice that the changes in
the peak heights occur only for the main peaks correspond-
ing to the continued fractionp,/q,, (when E~p,~q,R).
FIG. 2. Energy level spacing distribution for(a  All the a,—1 intermediate peaks have the same height as the
R=0,=2-1, and(b) R=1/e. These spectra are to be compared main peak that precedes them. In fact, in Figp) 2if we start
with the continued fraction expansions,=[2,2,...] and from the right and count groups of peaks with the same
e=[1,2,1,1,4,1,16, ..]. height, we obtain the sequenee[1,2,1,1,4,1,1,6,- -] [16].
This regular behavior of the peak heights seems to be true in
1 N general. In addition, ifR belongs to a class of relatively
(A—5)25(Ag_ o), n=123.... (4  simple irrationals known as quadratic numbéwhich in-
cludeso; and o), the entire distribution is self-similar and
From a physical point of view, the distribution in Fig. 1 shows a scaling behavi¢i7]. Indeed, if we replot the dis-
demonstrates the importance of the classical periodic orbitibution of Figs. 1a) and Za) using (A£)*P(A€) as the
in quasiperiodic systems, as in many other contexts regard¢-axis, we obtain periodic spectfan a log-log scalewith
ing the classical-quantum correspondefitke For irrational o and o, as the periodsscaling factorsalong theX axis.
R, the classical trajectory is always quasiperiodic and periThis is obviously related to the fact that the continued frac-
odic (closed orbits are strictly forbidden. However, any tion expansion of a quadratic number is periofid]. The
given section of a trajectory can be approximated very welself-similarity in the level distribution is lost for a more gen-
by closed periodic orbits. For example, wh&s=c,, the eralirrationalR, but the overall inverse-square-law-type rise
trajectory is nearly periodic afteF,_; and F, rotations Seems to persist, as seen in Figo)Xor R=1/e.
along the two irreducible circuits, the difference is propor- Now we briefly discuss the level spacing distribution of
tional to|F,_,—F,o,|<1/F,,, [14]. The longer the trajec- the scaled spectrun®(s), with the scaled level spacing de-
tory, the better the approximatigmith accordingly longer fined bys;=N(&) —N(&;_ 1) [recall thatN(x) is the number
period orbit3. Therefore thequantumenergy level spacing of levels with£<x]. This is the distribution originally con-
distribution in Fig. 1a) can also be interpreted as a measuresidered by Berry and Tabd#], and subsequently shown to
of the closeness of thelassical quasiperiodic trajectory to be nonconvergent by Pandey and co-workggs7] For
the nearby periodic orbits, with the peak positions correR= 1/1/2, by picking the same number of levels and bins, we
sponding to the closeness in length, and the peak heightgere able to reproduce exactly the histogram in Fig) 5f
corresponding to the relative fraction of time the trajectoryRef. [4]. However, upon considering more levels and finer
spends near the periodic orbits. bins, the histogram shows oscillatory behavior and fails to
So far we have focused on a single value of the frequencgonverge. The conflict between the highly reguiA &) (as
ratio R= o4, mainly because of the number theoretical sim-in Figs. 1 and 2 and the nonconverger®(s) can be re-
plicity of the golden mean. Much of our observations, how-solved, in our opinion, by noting an important fact: the av-
ever, can be readily carried over to other irrational frequencyerage level spacingA¢£) vanishes in the semiclassical limit.
ratios. In Fig. Za) we show the level spacing distribution We can see this easily in the simple casérefo;. Accord-
for a slightty more complicated frequency ratio, ing to Eq.(4),

P, (A8)x
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1 tem, namely, the Poisson distribution. First we recall that
what makes a harmonic oscillator different from generic in-
1 tegrable systems is its flat energy contour in action spéke
1 This makes a harmonic oscillator with incommensurate fre-
—K guency ratios a “permanently” quasiperiodic system, in the
71 sense that the frequency rafois energy independent. Once
R R is given, the classical trajectory remains topologically the
2 (_) same regardless of the energy. Thus the corresponding quan-
o k=1\0a) tum energy levels only reflect the particular valueRofThis
_n“fl noq\2 =0. 5 is not the case for generic integrable systems, where the fre-
( ) quenciesw;(1)=dH(1)/dl;= w;(I=m#~) depend on the val-
ues of the actions, which in turn is determined by energy. As

We expect the above result to hold for arbitré&yn light of we |“ncrease ,t,he energy ranggax, R varies .S”‘.°°th'y. and
the “memory” for a particular frequency ratio is lost in the

the inverse-square-law level spacing distribution favoring

small AE. The purpose of using a scaled level spacing is tOoverall guantum level spectrum, so is the the correlation be-

introduce a mag;—e;, such that the average spacing of thetyveen ditferent levels. As a result, t_he 'e"‘?' spacing Is essen
- . L _ tially random, and we have a Poisson-like distribution. It
new levels, s;=e;—e,_,, is unity (i.e., (s)=1). For a : . o
- . seems reasonable then that the generic Poisson distribution
2DHO, however, the original true level spacings have zerg

average and therefore it is impossible to find a map that canmlght arise as a result of an effective averaging of the har-

map it into a spectrum with unit average spacing. By for.monic oscillator Ie\{el spectrum over all possible freq_uency
- - . ratios. Further studies are needed, however, to establish such
mally defining,e;=N(&;), one ends up with a nonconvergent

. L a connection. Finally we note that the two-dimensional har-
histogram. Another way to see this is to note that the system - . . ; ; . ) . )
onic oscillator is not only interesting on its own right, it

does not have a proper energy scale which one can use P(}
. ; < : also serves as a good model system for small quantum dots
normalize the level spacings. This is also reflected in the

classical quasiperiodic trajectory, which does not have & semiconductor heterostructures, 19.

unique time scale built irisuch as the period of a closed The author would like to thank Terry Orlando for helpful
periodic orbi}. discussions. Financial support for this project is provided by
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